Multiscale Substitution Schemes and Kakutani Sequences of Partitions

Yotam Smilansky, Hebrew University of Jerusalem

Ergodic Theory and Dynamical Systems Seminar, University of Bristol

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

Kakutani introduced a family of sequences of partitions of the unit interval \mathcal{I} , which depend on a parameter $\alpha \in (0, 1)$.

In the $\frac{1}{3}$ -Kakutani sequence, whenever a partition is made, color the shorter new interval red and the longer new interval blue:

1. Does the $\frac{Number of red intervals}{Total number of intervals}$ converge?

In the $\frac{1}{3}$ -Kakutani sequence, whenever a partition is made, color the shorter new interval red and the longer new interval blue:

Does the <u>Number of red intervals</u> converge?
 Does the Length (Union of red intervals) converge?

- 1. Does the $\frac{Number of red intervals}{Total number of intervals}$ converge?
- 2. Does the Length (Union of red intervals) converge?
- 3. In case both limits exist, are they necessarily the same?

1. Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .

- 1. Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ in \mathbb{R}^d .
- 2. Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,\textit{n};\;k=1,\ldots,k_{ij}
ight)$$

which tile \mathcal{T}_i , allowing isometries.

- 1. Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ in \mathbb{R}^d .
- 2. Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,\textit{n};\;k=1,\ldots,k_{ij}
ight)$$

which tile \mathcal{T}_i , allowing isometries.

- 1. Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ in \mathbb{R}^d .
- 2. Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,\textit{n};\;k=1,\ldots,k_{ij}
ight)$$

which tile \mathcal{T}_i , allowing isometries.

- 1. Labeled prototiles $\mathcal{F} = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ in \mathbb{R}^d .
- 2. Substitution rule assigning to every T_i a list of tiles

$$\mathcal{SR}\left(\mathcal{T}_{i}
ight)=\left(lpha_{ij}^{\left(k
ight)}\mathcal{T}_{j}:\,j=1,\ldots,\textit{n};\;k=1,\ldots,k_{ij}
ight)$$

which tile \mathcal{T}_i , allowing isometries.

Let $\mathcal{A}(\mathcal{T}_i)$ be the set of all labeled tiles which appear by applying the substitution finitely many times on \mathcal{T}_i and subsequent tiles.

A scheme is **irreducible** if $\mathcal{A}(\mathcal{T}_i)$ contains tiles of type *j* for all *i*, *j*.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

• The trivial partition $\pi_0 = \mathcal{T}_i$.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Kakutani sequences of partitions

A **partition** of a set $U \subset \mathbb{R}^d$ is a finite covering of U by subsets of U with pairwise disjoint interiors.

A Kakutani sequence of partitions $\{\pi_m\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme on \mathcal{F} is defined as following:

- The trivial partition $\pi_0 = \mathcal{T}_i$.
- ▶ Partition π_m is defined by substituting all the tiles of maximal volume in π_{m-1} according to the substitution rule.

Example - The $\alpha\text{-Kakutani}$ sequence

The original α -Kakutani sequence is generated by a scheme on $\mathcal{F} = \{\mathcal{I}\}$ with a substitution rule $\mathcal{SR}(\mathcal{I}) = (\alpha \mathcal{I}, (1 - \alpha)\mathcal{I}).$

Example - The α -Kakutani sequence

The original α -Kakutani sequence is generated by a scheme on $\mathcal{F} = \{\mathcal{I}\}$ with a substitution rule $\mathcal{SR}(\mathcal{I}) = (\alpha \mathcal{I}, (1 - \alpha)\mathcal{I}).$

For example, the $\frac{1}{3}$ -Kakutani sequence

is generated by the scheme

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

The sequence $\{x_n\}$ is **uniformly distributed** in U if for any continuous function f on U

$$\lim_{n\to\infty}\frac{1}{|x_n|}\sum_{x\in x_n}f(x)=\frac{1}{\operatorname{vol} U}\int_U f(t)\,dt,$$

where the integration is with respect to Lebesgue measure.

Let $U \subset \mathbb{R}^d$ be a measurable set of finite positive measure. For every $n \in \mathbb{N}$, let x_n be a finite set of points in U.

The sequence $\{x_n\}$ is **uniformly distributed** in U if for any continuous function f on U

$$\lim_{n\to\infty}\frac{1}{|x_n|}\sum_{x\in x_n}f(x)=\frac{1}{\operatorname{vol} U}\int_U f(t)\,dt,$$

where the integration is with respect to Lebesgue measure.

This is equivalent to the weak-* convergence of the normalized sampling measures

$$\frac{1}{|x_n|}\sum_{x\in x_n}\delta_x$$

to the normalized Lebesgue measure on U, where $\delta_{\rm x}$ is the Dirac measure concentrated at ${\rm x}.$

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

The sequence $\{\gamma_n\}$ is **uniformly distributed** if there exists a marking sequence of $\{\gamma_n\}$ which is uniformly distributed in U.

Let $\{\gamma_n\}$ be a sequence of partitions of U. A marking sequence $\{x_n\}$ of $\{\gamma_n\}$ is a sequence of sets of points in U, such that every set in the partition γ_n contains a single point of x_n .

The sequence $\{\gamma_n\}$ is **uniformly distributed** if there exists a marking sequence of $\{\gamma_n\}$ which is uniformly distributed in U.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles and let $\{\pi_m\}$ be a Kakutani sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by an irreducible multiscale substitution scheme on \mathcal{F} . Then $\{\pi_m\}$ is uniformly distributed in \mathcal{T}_i .

Tile counting argument implies uniform distribution

Lemma

Let $\{\gamma_m\}$ be a sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by a multiscale substitution scheme on \mathcal{F} , such that for every $\varepsilon > 0$ there exists $m_0 \in \mathbb{N}$ so all tiles in γ_m are of diameter less than ε for all $m \ge m_0$. Assume there exists a marking sequence $\{x_m\}$ of $\{\gamma_m\}$ such that for any tile $T \in \mathcal{A}(\mathcal{T}_i)$

$$\lim_{m\to\infty}\frac{|\{x_m\cap T\}|}{|x_m|}=\frac{\mathrm{vol}\,T}{\mathrm{vol}\,\mathcal{T}_i}.$$

Then $\{\gamma_m\}$ is uniformly distributed in \mathcal{T}_i .

Tile counting argument implies uniform distribution

Lemma

Let $\{\gamma_m\}$ be a sequence of partitions of $\mathcal{T}_i \in \mathcal{F}$ generated by a multiscale substitution scheme on \mathcal{F} , such that for every $\varepsilon > 0$ there exists $m_0 \in \mathbb{N}$ so all tiles in γ_m are of diameter less than ε for all $m \ge m_0$. Assume there exists a marking sequence $\{x_m\}$ of $\{\gamma_m\}$ such that for any tile $T \in \mathcal{A}(\mathcal{T}_i)$

$$\lim_{m\to\infty}\frac{|\{x_m\cap T\}|}{|x_m|}=\frac{\mathrm{vol}\,T}{\mathrm{vol}\,\mathcal{T}_i}.$$

Then $\{\gamma_m\}$ is uniformly distributed in \mathcal{T}_i .

 Counting of tiles is done using directed weighted metric graphs.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \ldots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \ldots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

2. For every $\alpha T_{j} \in SR(T_{i})$ there is an edge $\varepsilon \in \mathcal{E}$ such that

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \ldots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

2. For every $\alpha T_i \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

lnitial vertex of ε is $i \in \mathcal{V}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \dots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

- 2. For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that
 - lnitial vertex of ε is $i \in \mathcal{V}$.
 - Terminal vertex of ε is $j \in \mathcal{V}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \dots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

- 2. For every $\alpha \mathcal{T}_{j} \in \mathcal{SR}(\mathcal{T}_{i})$ there is an edge $\varepsilon \in \mathcal{E}$ such that
 - lnitial vertex of ε is $i \in \mathcal{V}$.
 - Terminal vertex of ε is $j \in \mathcal{V}$.

• Weight of
$$\varepsilon$$
 is $I(\varepsilon) = \log \frac{1}{\alpha}$.

The directed weighted metric graph $G = (\mathcal{V}, \mathcal{E}, I)$ associated with a multiscale substitution scheme on $\mathcal{F} = \{\mathcal{T}_1, \dots, \mathcal{T}_n\}$ has

1. $\mathcal{V} = \{1, \ldots, n\}$, vertex $i \in \mathcal{V}$ is associated with prototile \mathcal{T}_i .

2. For every $\alpha T_j \in SR(T_i)$ there is an edge $\varepsilon \in \mathcal{E}$ such that

- lnitial vertex of ε is $i \in \mathcal{V}$.
- Terminal vertex of ε is $j \in \mathcal{V}$.

• Weight of
$$\varepsilon$$
 is $I(\varepsilon) = \log \frac{1}{\alpha}$.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

• A scheme is called **normalized** if all tiles are of volume 1.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.
- Equivalent scheme \rightarrow sliding vertices along edges of graph.

Two schemes on $\mathcal{F}^1 = (\mathcal{T}_1, \dots, \mathcal{T}_n)$ and $\mathcal{F}^2 = (\lambda_1 \mathcal{T}_1, \dots, \lambda_n \mathcal{T}_n)$ are **equivalent** if the substitution rules are the same up to rescaling.

- A scheme is called **normalized** if all tiles are of volume 1.
- Every scheme is equivalent to a unique normalized scheme.
- Equivalent scheme \rightarrow sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are β_{ij} , then for every equivalent scheme the scaling constants are

$$\alpha_{ij} = \left(\frac{\mathrm{vol}\mathcal{T}_i}{\mathrm{vol}\mathcal{T}_j}\right)^{1/d} \beta_{ij}.$$

The β_{ij} 's are called the **constants of substitution**.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

Tiles in $\mathcal{A}(\mathcal{T}_i)$ correspond to paths $\gamma \in G$ with initial vertex $i \in \mathcal{V}$.

If G is associated with a normalized scheme:

Vol T = e^{-l(γ)d}, and so the correspondence between volumes of tiles and the length of the associated path is monotone, that is

$$\operatorname{vol} T_1 < \operatorname{vol} T_2 \iff I(\gamma_1) > I(\gamma_2).$$

A **path** in G is a directed walk on the edges of G which originates and terminates at vertices of G.

Tiles in $\mathcal{A}(\mathcal{T}_i)$ correspond to paths $\gamma \in G$ with initial vertex $i \in \mathcal{V}$.

If G is associated with a normalized scheme:

Vol T = e^{-l(γ)d}, and so the correspondence between volumes of tiles and the length of the associated path is monotone, that is

$$\operatorname{vol} T_1 < \operatorname{vol} T_2 \iff I(\gamma_1) > I(\gamma_2).$$

► Tiles of maximal volume in π_m are associated with paths of length I_m, where {I_m} is the increasing sequence of lengths of paths in G with initial vertex i ∈ V.

Metric paths in G and tiles in π_m

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.
A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

A **metric path** in G is a directed walk on edges of G which does not necessarily originate or terminate at vertices of G.

Tiles in π_m correspond to metric paths of length I_m which originate at $i \in \mathcal{V}$ in the graph associated with an equivalent normalized scheme.

Counting tiles in π_m is reduced to counting metric paths of length l_m in the associated graph.

Incommensurable and commensurable schemes

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

Incommensurable and commensurable schemes

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

 α -Kakutani scheme: For a.e α the scheme is incommensurable.

Incommensurable and commensurable schemes

A scheme is **incommensurable** if its associated graph *G* is incommensurable, that is there exist two closed paths in *G* which are of lengths $a, b \in \mathbb{R}$ satisfying $\frac{a}{b} \notin \mathbb{Q}$.

 α -Kakutani scheme: For a.e α the scheme is incommensurable. A commensurable example – The Rauzy fractal scheme:

Edge lengths: $\log \tau$, $2 \log \tau$, $3 \log \tau$, where $\tau =$ tribonacci constant.

Sadun's generalized pinwheel

For a.e θ the generalized pinwheel scheme is incommensurable:

Sadun's generalized pinwheel

For a.e θ the generalized pinwheel scheme is incommensurable:

 $\theta = \arctan \frac{1}{2}$ defines Conway and Radin's Pinwheel substitution.

Sadun's generalized pinwheel

For a.e θ the generalized pinwheel scheme is incommensurable:

 $\theta = \arctan \frac{1}{2}$ defines Conway and Radin's Pinwheel substitution.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

• At t = 0 the tile T_i is substituted via H.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- At t = 0 the tile T_i is substituted via H.
- As t increases, the patch is inflated by e^t .

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- At t = 0 the tile T_i is substituted via H.
- As t increases, the patch is inflated by e^t .
- ▶ Tiles are substituted via *H* as soon as they reach volume 1.

Let *H* be a multiscale substitution scheme on $\mathcal{F} = (\mathcal{T}_i, \dots, \mathcal{T}_n)$, assumed to be incommensurable, irreducible and normalized.

The family of generating patches

$$\mathscr{P}_i = \{F_t(\mathcal{T}_i): t \in \mathbb{R}_{\geq 0}\}$$

is defined as follows:

- At t = 0 the tile T_i is substituted via H.
- As t increases, the patch is inflated by e^t .
- ▶ Tiles are substituted via *H* as soon as they reach volume 1.

The **tiling space** X_H is the space of all tilings τ of \mathbb{R}^d with the property that every patch of τ is a limit of translated sub-patches of elements of $\mathscr{P} = \bigcup \mathscr{P}_i$. Elements of X_H are called **multiscale**

substitution tilings.

H		Ŧ	
		E	
	П		

	-	Н	┥	_	
Н	-		B		
		щ	Ц		
Р	Т	ш	⊢	-	_

		Г	
	┨	 ł	
	Τ	L	
	Τ		

We show for example:

• Every $\tau \in X_H$ is almost repetitive.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.
- ► Various asymptotic frequencies of tile types and scales.

- Every $\tau \in X_H$ is almost repetitive.
- The dynamical system (X_H, \mathbb{R}^d) is **minimal**.
- Tilings $\tau \in X_H$ are **not BD equivalent** to a lattice.
- ► Various asymptotic frequencies of tile types and scales.
- Many more beautiful properties! Coming soon...

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

Example: The Penrose-Robinson substitution $\alpha = \frac{1}{\varphi}$:

If $\alpha_{ij} = \alpha \in (0, 1)$ for all *i* and *j* the scheme is **fixed scale**.

Example: The Penrose-Robinson substitution $\alpha = \frac{1}{\varphi}$:

This is the classical setup for **substitution tilings** of \mathbb{R}^d :

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

• The trivial partition $\delta_0 = \mathcal{T}_i$.

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

• The trivial partition
$$\delta_0 = \mathcal{T}_i$$
.

Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

• The trivial partition
$$\delta_0 = \mathcal{T}_i$$
.

Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.

Theorem

Generations sequences of partitions generated by fixed scale substitution schemes are uniformly distributed.

A generations sequence of partitions $\{\delta_k\}$ of $\mathcal{T}_i \in \mathcal{F}$ generated by a substitution scheme is defined as following:

• The trivial partition
$$\delta_0 = \mathcal{T}_i$$
.

Partition δ_k is defined by substituting all the tiles of in δ_{k-1} according to the substitution rule.

Theorem

Generations sequences of partitions generated by fixed scale substitution schemes are uniformly distributed.

Follows from the Perron-Frobenius Theorem for irreducible matrices, and additional standard results on cyclic matrices.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by some fixed scale scheme.

Clearly the Kakutani sequence is not a subsequence of the generations sequence!

Lemma

Any **Kakutani** sequence of partitions generated by a commensurable scheme is a subsequence of a **generations** sequence of partitions generated by **some fixed scale scheme**.

Clearly the Kakutani sequence is not a subsequence of the generations sequence!

Sketch of proof of lemma – "slowing down"

Sketch of proof of lemma - "slowing down"

Claim: There exist equivalent schemes such that:

1. The lengths of **all edges** in the associated graph *G* are dependent over the rationals.

Sketch of proof of lemma - "slowing down"

Claim: There exist equivalent schemes such that:

- 1. The lengths of **all edges** in the associated graph *G* are dependent over the rationals.
- 2. The correspondence between the volumes of tiles in \mathcal{T}_i and lengths of the associated paths in *G* remains monotone.

Sketch of proof of lemma - "slowing down"

Claim: There exist equivalent schemes such that:

- 1. The lengths of **all edges** in the associated graph *G* are dependent over the rationals.
- 2. The correspondence between the volumes of tiles in \mathcal{T}_i and lengths of the associated paths in *G* remains monotone.

Defining a fixed scale scheme

We can now add vertices to G in a way that all edges in the new graph are of **equal length**

Defining a fixed scale scheme

We can now add vertices to G in a way that all edges in the new graph are of **equal length**

This graph is associated with a fixed scale scheme on the prototiles:

The graph matrix function

Let $\varepsilon_1, \ldots, \varepsilon_{k_{ij}}$ the edges with initial vertex *i* and terminal vertex *j*. The **graph matrix function** of *G* is the matrix valued function $M : \mathbb{C} \to M_n(\mathbb{C})$ defined by

$$M_{ij}(s) = e^{-s \cdot I(\varepsilon_1)} + \cdots + e^{-s \cdot I(\varepsilon_{k_{ij}})},$$

and $M_{ij}(s) = 0$ if there are no such edges in G.

The graph matrix function

Let $\varepsilon_1, \ldots, \varepsilon_{k_{ij}}$ the edges with initial vertex *i* and terminal vertex *j*. The **graph matrix function** of *G* is the matrix valued function $M : \mathbb{C} \to M_n(\mathbb{C})$ defined by

$$M_{ij}(s) = e^{-s \cdot I(\varepsilon_1)} + \cdots + e^{-s \cdot I(\varepsilon_{k_{ij}})},$$

and $M_{ij}(s) = 0$ if there are no such edges in G.

Lemma

Let G be a graph associated with an irreducible multiscale substitution scheme in \mathbb{R}^d . Then M(d) is a non-negative irreducible matrix with a positive Perron-Frobenius right eigenvector

$$v_{PF} = v_{vol} = (\operatorname{vol}\mathcal{T}_1, \dots, \operatorname{vol}\mathcal{T}_n) \in \mathbb{R}^n$$

and Perron-Frobenius eigenvalue $\mu_{PF} = 1$.

Counting paths on incommensurable graphs

Theorem ([Kiro, Smilansky×2 (2018)])

Let G be a strongly connected incommensurable graph. There exist $\lambda > 0$ and $Q \in M_n(\mathbb{R})$ with positive entries, such that if $\varepsilon \in \mathcal{E}$ has initial vertex $h \in \mathcal{V}$, the number of metric paths of length exactly x from vertex $i \in \mathcal{V}$ to a point on the edge ε grows as

$$rac{1-e^{-l(arepsilon)\lambda}}{\lambda}Q_{ih}e^{\lambda x}+o\left(e^{\lambda x}
ight),\quad x
ightarrow\infty.$$

where λ is the maximal real value for which $\rho(M(\lambda)) = 1$,

$$Q = \frac{\operatorname{adj} \left(I - M(\lambda) \right)}{-\operatorname{tr} \left(\operatorname{adj} \left(I - M(\lambda) \right) \cdot M'(\lambda) \right)}.$$

Counting paths on incommensurable graphs

Theorem ([Kiro, Smilansky×2 (2018)])

Let G be a strongly connected incommensurable graph. There exist $\lambda > 0$ and $Q \in M_n(\mathbb{R})$ with positive entries, such that if $\varepsilon \in \mathcal{E}$ has initial vertex $h \in \mathcal{V}$, the number of metric paths of length exactly x from vertex $i \in \mathcal{V}$ to a point on the edge ε grows as

$$rac{1-e^{-l(arepsilon)\lambda}}{\lambda}Q_{ih}e^{\lambda x}+o\left(e^{\lambda x}
ight),\quad x
ightarrow\infty.$$

where λ is the maximal real value for which $\rho(M(\lambda)) = 1$,

$$Q = \frac{\operatorname{adj} \left(I - M(\lambda) \right)}{-\operatorname{tr} \left(\operatorname{adj} \left(I - M(\lambda) \right) \cdot M'(\lambda) \right)}$$

It follows that $M(\lambda)$ is a non-negative irreducible matrix with Perron Frobenius eigenvalue $\mu_{PF} = 1$, and the columns of Q are spanned by an associated Perron Frobenius eigenvector v_{PF} .

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Proof of uniform distribution $\{\pi_m\}$: Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Proof of uniform distribution $\{\pi_m\}$: Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r. Let $\{I_m\}$ be as before, and let $\{\tilde{\pi}_m\}$ be the Kakutani sequence of partitions of \mathcal{T}_r generated by the same scheme.

Theorem

Let $\mathcal{F} = (\mathcal{T}_1, \ldots, \mathcal{T}_n)$ be a set of prototiles in \mathbb{R}^d and let $\{\pi_m\}$ be a sequence of partitions of a tile \mathcal{T}_i generated by an irreducible incommensurable multiscale substitution on \mathcal{F} . Then

$$|\{\text{Tiles} \in \pi_m\}| = \sum_{j=1}^n \sum_{h=1}^n \sum_{k=1}^{k_{hj}} \frac{1 - \left(\beta_{hj}^{(k)}\right)^d}{d} q_h e^{dl_m} + o\left(e^{dl_m}\right), \quad m \to \infty,$$

independent of i.

Proof of uniform distribution $\{\pi_m\}$: Let $T \in \mathcal{A}(\mathcal{T}_i)$, say T appears at partition π_{m_0} and is of type r. Let $\{I_m\}$ be as before, and let $\{\tilde{\pi}_m\}$ be the Kakutani sequence of partitions of \mathcal{T}_r generated by the same scheme. For $m > m_0$

$$\frac{|\{x_m \cap T\}|}{|x_m|} = \frac{|\{\text{Tiles} \in \widetilde{\pi}_{m-m_0}\}|}{|\{\text{Tiles} \in \pi_m\}|} = \frac{e^{d(l_m - l_{m_0})}}{e^{dl_m}} + o(1),$$

and since $e^{-l_{m_0}d} = \frac{\operatorname{vol} T}{\operatorname{vol} T_i}$ uniform distribution follows.

Elements of the proof of the path counting formula

The Wiener-Ikehara Theorem: Let f(x) be a non-negative and monotone function on $[0, \infty)$, such that

$$\mathcal{L}\left\{f\left(x\right)\right\}\left(s\right)=\int_{0}^{\infty}f\left(x\right)e^{-xs}dx,$$

converges for $\operatorname{Re}(s) > \lambda$, and $\mathcal{L} \{f(x)\}(s) - \frac{c}{s-\lambda}$ extends to a continuous function in $\operatorname{Re}(s) \ge \lambda$, then

$$f(x) = ce^{\lambda x} + o(e^{\lambda x}), \quad x \to \infty.$$

Elements of the proof of the path counting formula

The Wiener-Ikehara Theorem: Let f(x) be a non-negative and monotone function on $[0, \infty)$, such that

$$\mathcal{L}\left\{f\left(x\right)\right\}\left(s\right)=\int_{0}^{\infty}f\left(x\right)e^{-xs}dx,$$

converges for $\operatorname{Re}(s) > \lambda$, and $\mathcal{L} \{f(x)\}(s) - \frac{c}{s-\lambda}$ extends to a continuous function in $\operatorname{Re}(s) \ge \lambda$, then

$$f(x) = ce^{\lambda x} + o(e^{\lambda x}), \quad x \to \infty.$$

Let ε be an edge with initial vertex h, and let $B_{i,\varepsilon}(x)$ be the number of paths of length x from $i \in \mathcal{V}$ to a point on ε .

Elements of the proof of the path counting formula

The Wiener-Ikehara Theorem: Let f(x) be a non-negative and monotone function on $[0, \infty)$, such that

$$\mathcal{L}\left\{f\left(x\right)\right\}\left(s\right)=\int_{0}^{\infty}f\left(x\right)e^{-xs}dx,$$

converges for $\operatorname{Re}(s) > \lambda$, and $\mathcal{L} \{f(x)\}(s) - \frac{c}{s-\lambda}$ extends to a continuous function in $\operatorname{Re}(s) \ge \lambda$, then

$$f(x) = ce^{\lambda x} + o(e^{\lambda x}), \quad x \to \infty.$$

Let ε be an edge with initial vertex h, and let $B_{i,\varepsilon}(x)$ be the number of paths of length x from $i \in \mathcal{V}$ to a point on ε .

$$\mathcal{L}\left\{B_{i,\varepsilon}\left(x\right)\right\}\left(s\right) = \frac{1 - e^{-l(\varepsilon)s}}{s} \cdot \frac{\left(\operatorname{adj}\left(I - M\left(s\right)\right)\right)_{ih}}{\det\left(I - M\left(s\right)\right)},$$

and our theorem follows from a study of the locations of the zeroes of the exponential polynomial det (I - M(s)).

A simple but interesting example

Graphs associated with incommensurable α -Kakutani or pinwheel schemes have a single vertex and loops of two lengths. We get

$$\mathcal{L}\left\{B_{i,\varepsilon}\left(x\right)\right\}\left(s\right) = \frac{1}{1 - e^{-as} - e^{-bs}}$$

for some incommensurable *a* and *b*.

A simple but interesting example

Graphs associated with incommensurable α -Kakutani or pinwheel schemes have a single vertex and loops of two lengths. We get

$$\mathcal{L}\left\{B_{i,\varepsilon}\left(x
ight)
ight\}\left(s
ight)=rac{1}{1-e^{-as}-e^{-bs}}$$

for some incommensurable *a* and *b*.

For example if $\frac{a}{b} = \sqrt{2}$, numerics show that the pole structure is

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

Theorem

Let $\{x_m(r)\}\$ be a marking sequence of tiles of type r in π_m . Then $\{x_m(r)\}\$ is uniformly distributed.

The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply additional results for incommensurable schemes:

Theorem

Let $\{x_m(r)\}\$ be a marking sequence of tiles of type r in π_m . Then $\{x_m(r)\}\$ is uniformly distributed.

Theorem Under the previous assumptions

$$\frac{|\{\text{Tiles of type } r \text{ in } \pi_m\}|}{|\{\text{Tiles in } \pi_m\}|} = \frac{\sum\limits_{h=1}^n q_h \sum\limits_{k=1}^{k_{hr}} \left(1 - \left(\beta_{hr}^{(k)}\right)^d\right)}{\sum\limits_{r=1}^n \sum\limits_{h=1}^n q_h \sum\limits_{k=1}^{k_{hr}} \left(1 - \left(\beta_{hr}^{(k)}\right)^d\right)} + o\left(1\right).$$

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n}\left(\sum_{k=1}^{k_{hr}}\left(eta_{ir}^{\left(k
ight)}
ight)^{d}\log\left(rac{1}{eta_{ir}^{\left(k
ight)}}
ight)q_{h}
ight)+o\left(1
ight),\quad m
ightarrow\infty$$

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

 Results on random walks on directed weighted graph with probabilities assigned to outgoing edges [Kiro, Smilansky×2]. In this model a walker is advancing at a constant speed 1 along the graph, and when arriving to a vertex she chooses an outgoing edge according to the probabilities.

Theorem

The volume of the region covered by tiles of type r in π_m is

$$\sum_{h=1}^{n} \left(\sum_{k=1}^{k_{hr}} \left(\beta_{ir}^{(k)} \right)^{d} \log \left(\frac{1}{\beta_{ir}^{(k)}} \right) q_{h} \right) + o\left(1 \right), \quad m \to \infty$$

Ingredients of proof:

- Results on random walks on directed weighted graph with probabilities assigned to outgoing edges [Kiro, Smilansky×2]. In this model a walker is advancing at a constant speed 1 along the graph, and when arriving to a vertex she chooses an outgoing edge according to the probabilities.
- 2. Special properties of graphs and the relevant probabilities which are associated with substitution schemes.

A nice answer

Back to the red and blue $\frac{1}{3}$ -Kakutani sequence:

Back to the red and blue $\frac{1}{3}$ -Kakutani sequence:

1. $\lim_{m \to \infty} \frac{|\{\operatorname{Red intervals} \in \pi_m\}|}{|\{\operatorname{Intervals} \in \pi_m\}|}$

Back to the red and blue $\frac{1}{3}$ -Kakutani sequence:

 $1. \lim_{m \to \infty} \frac{|\{\operatorname{Red intervals} \in \pi_m\}|}{|\{\operatorname{Intervals} \in \pi_m\}|} = \frac{2}{3}.$

- $1. \lim_{m \to \infty} \frac{|\{\operatorname{Red intervals} \in \pi_m\}|}{|\{\operatorname{Intervals} \in \pi_m\}|} = \frac{2}{3}.$
- 2. $\lim_{m\to\infty} \operatorname{vol}\left(\bigcup \{\operatorname{Red intervals} \in \pi_m\}\right)$

1.
$$\lim_{m \to \infty} \frac{|\{\operatorname{Red intervals} \in \pi_m\}|}{|\{\operatorname{Intervals} \in \pi_m\}|} = \frac{2}{3}.$$

2.
$$\lim_{m \to \infty} \operatorname{vol}\left(\bigcup \{\operatorname{Red intervals} \in \pi_m\}\right) = \frac{\frac{1}{3}\log\frac{1}{3}}{\frac{1}{3}\log\frac{1}{3} + \frac{2}{3}\log\frac{2}{3}}.$$

