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The α-Kakutani sequence of partitions of I = [0, 1]

Kakutani introduced a family of sequences of partitions of the unit
interval I, which depend on a parameter α ∈ (0, 1).

The following is the 1
3 -Kakutani sequence of partitions:

Kakutani’s Theorem: For all α ∈ (0, 1), the α-Kakutani sequence
of partitions is uniformly distributed in I.
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A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?

3. In case both limits exist, are they necessarily the same?



A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the Number of red intervals
Total number of intervals converge?

2. Does the Length (Union of red intervals) converge?
3. In case both limits exist, are they necessarily the same?



Multiscale substitution schemes

1. Labeled prototiles F = (T1, . . . , Tn) in Rd .
2. Substitution rule assigning to every Ti a list of tiles

SR (Ti ) =
(
α

(k)
ij Tj : j = 1, . . . , n; k = 1, . . . , kij

)
which tile Ti , allowing isometries.

Let A (Ti) be the set of all labeled tiles which appear by applying
the substitution finitely many times on Ti and subsequent tiles.

A scheme is irreducible if A (Ti) contains tiles of type j for all i , j .
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Kakutani sequences of partitions

A partition of a set U ⊂ Rd is a finite covering of U by subsets of
U with pairwise disjoint interiors.

A Kakutani sequence of partitions {πm} of Ti ∈ F generated by
a substitution scheme on F is defined as following:

I The trivial partition π0 = Ti .
I Partition πm is defined by substituting all the tiles of maximal

volume in πm−1 according to the substitution rule.
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Example - The α-Kakutani sequence

The original α-Kakutani sequence is generated by a scheme on
F = {I} with a substitution rule SR (I) = (αI, (1− α) I).

For example, the 1
3 -Kakutani sequence

is generated by the scheme
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Uniform distribution of sequences of points

Let U ⊂ Rd be a measurable set of finite positive measure.
For every n ∈ N, let xn be a finite set of points in U.

The sequence {xn} is uniformly distributed in U if for any
continuous function f on U

lim
n→∞

1
|xn|

∑
x∈xn

f (x) = 1
volU

∫
U

f (t) dt,

where the integration is with respect to Lebesgue measure.

This is equivalent to the weak-* convergence of the normalized
sampling measures

1
|xn|

∑
x∈xn

δx

to the normalized Lebesgue measure on U, where δx is the Dirac
measure concentrated at x .
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Uniform distribution of sequences of partitions

Let {γn} be a sequence of partitions of U. A marking sequence
{xn} of {γn} is a sequence of sets of points in U, such that every
set in the partition γn contains a single point of xn.

The sequence {γn} is uniformly distributed if there exists a
marking sequence of {γn} which is uniformly distributed in U.

Theorem
Let F = (T1, . . . , Tn) be a set of prototiles and let {πm} be a
Kakutani sequence of partitions of Ti ∈ F generated by an
irreducible multiscale substitution scheme on F . Then {πm} is
uniformly distributed in Ti .
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Tile counting argument implies uniform distribution

Lemma
Let {γm} be a sequence of partitions of Ti ∈ F generated by a
multiscale substitution scheme on F , such that for every ε > 0
there exists m0 ∈ N so all tiles in γm are of diameter less than ε for
all m ≥ m0. Assume there exists a marking sequence {xm} of
{γm} such that for any tile T ∈ A (Ti)

lim
m→∞

|{xm ∩ T}|
|xm|

= volT
volTi

.

Then {γm} is uniformly distributed in Ti .

I Counting of tiles is done using directed weighted metric
graphs.
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Graphs associated with multiscale substitution schemes

The directed weighted metric graph G = (V, E , l) associated with
a multiscale substitution scheme on F = {T1, . . . , Tn} has

1. V = {1, . . . , n}, vertex i ∈ V is associated with prototile Ti .
2. For every αTj ∈ SR (Ti) there is an edge ε ∈ E such that

I Initial vertex of ε is i ∈ V.
I Terminal vertex of ε is j ∈ V.
I Weight of ε is l (ε) = log 1

α .
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Equivalent and normalized schemes
Two schemes on F1 = (T1, . . . , Tn) and F2 = (λ1T1, . . . , λnTn) are
equivalent if the substitution rules are the same up to rescaling.

I A scheme is called normalized if all tiles are of volume 1.
I Every scheme is equivalent to a unique normalized scheme.
I Equivalent scheme → sliding vertices along edges of graph.

If the scaling constants in a normalized scheme are βij , then for
every equivalent scheme the scaling constants are

αij =
(

volTi
volTj

)1/d

βij .

The βij ’s are called the constants of substitution.
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Paths in G and tiles in A (Ti)
A path in G is a directed walk on the edges of G which originates
and terminates at vertices of G .

Tiles in A (Ti) correspond to paths γ ∈ G with initial vertex i ∈ V.

If G is associated with a normalized scheme:

I volT = e−l(γ)d , and so the correspondence between volumes
of tiles and the length of the associated path is monotone,
that is

volT1 < volT2 ⇐⇒ l (γ1) > l (γ2) .
I Tiles of maximal volume in πm are associated with paths of

length lm, where {lm} is the increasing sequence of lengths of
paths in G with initial vertex i ∈ V.
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Metric paths in G and tiles in πm
A metric path in G is a directed walk on edges of G which does
not necessarily originate or terminate at vertices of G .

Tiles in πm correspond to metric paths of length lm which originate
at i ∈ V in the graph associated with an equivalent normalized
scheme.

I Counting tiles in πm is reduced to counting metric paths of
length lm in the associated graph.
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Incommensurable and commensurable schemes

A scheme is incommensurable if its associated graph G is
incommensurable, that is there exist two closed paths in G which
are of lengths a, b ∈ R satisfying a

b /∈ Q.

α-Kakutani scheme: For a.e α the scheme is incommensurable.

A commensurable example – The Rauzy fractal scheme:

Edge lengths: log τ, 2 log τ, 3 log τ , where τ = tribonacci constant.
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Sadun’s generalized pinwheel
For a.e θ the generalized pinwheel scheme is incommensurable:

θ = arctan 1
2 defines Conway and Radin’s Pinwheel substitution.
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Multiscale substitution tilings (with Yaar Solomon)

Let H be a multiscale substitution scheme on F = (Ti , . . . , Tn),
assumed to be incommensurable, irreducible and normalized.

The family of generating patches

Pi = {Ft (Ti) : t ∈ R≥0}

is defined as follows:

I At t = 0 the tile Ti is substituted via H.
I As t increases, the patch is inflated by et .
I Tiles are substituted via H as soon as they reach volume 1.

The tiling space XH is the space of all tilings τ of Rd with the
property that every patch of τ is a limit of translated sub-patches
of elements of P = ∪Pi . Elements of XH are called multiscale

substitution tilings.
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Multiscale substitution tilings and tiling spaces

We show for example:

I Every τ ∈ XH is almost repetitive.
I The dynamical system

(
XH ,Rd

)
is minimal.

I Tilings τ ∈ XH are not BD equivalent to a lattice.
I Various asymptotic frequencies of tile types and scales.
I Many more beautiful properties! Coming soon...
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The commensurable case - fixed scale schemes

If αij = α ∈ (0, 1) for all i and j the scheme is fixed scale.

Example: The Penrose-Robinson substitution α = 1
ϕ :

This is the classical setup for substitution tilings of Rd :
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The commensurable case - generations sequences

A generations sequence of partitions {δk} of Ti ∈ F generated
by a substitution scheme is defined as following:

I The trivial partition δ0 = Ti .
I Partition δk is defined by substituting all the tiles of in δk−1

according to the substitution rule.

Theorem
Generations sequences of partitions generated by fixed scale
substitution schemes are uniformly distributed.

Follows from the Perron-Frobenius Theorem for irreducible
matrices, and additional standard results on cyclic matrices.
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The commensurable case - Kakutani vs. generations

Lemma
Any Kakutani sequence of partitions generated by a
commensurable scheme is a subsequence of a generations
sequence of partitions generated by some fixed scale scheme.

Clearly the Kakutani sequence is not a subsequence of the
generations sequence!
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Sketch of proof of lemma – “slowing down”

Claim: There exist equivalent schemes such that:

1. The lengths of all edges in the associated graph G are
dependent over the rationals.

2. The correspondence between the volumes of tiles in Ti and
lengths of the associated paths in G remains monotone.
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Defining a fixed scale scheme

We can now add vertices to G in a way that all edges in the new
graph are of equal length

This graph is associated with a fixed scale scheme on the prototiles:
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The graph matrix function
Let ε1, . . . , εkij the edges with initial vertex i and terminal vertex j .

The graph matrix function of G is the matrix valued function
M : C→ Mn (C) defined by

Mij (s) = e−s·l(ε1) + · · ·+ e−s·l
(
εkij

)
,

and Mij (s) = 0 if there are no such edges in G .

Lemma
Let G be a graph associated with an irreducible multiscale
substitution scheme in Rd . Then M (d) is a non-negative
irreducible matrix with a positive Perron-Frobenius right
eigenvector

vPF = vvol = (volT1, . . . , volTn) ∈ Rn

and Perron-Frobenius eigenvalue µPF = 1.
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Counting paths on incommensurable graphs

Theorem ([Kiro, Smilansky×2 (2018)])
Let G be a strongly connected incommensurable graph. There exist
λ > 0 and Q ∈ Mn (R) with positive entries, such that if ε ∈ E has
initial vertex h ∈ V, the number of metric paths of length exactly x
from vertex i ∈ V to a point on the edge ε grows as

1− e−l(ε)λ

λ
Qiheλx + o

(
eλx
)
, x →∞.

where λ is the maximal real value for which ρ (M (λ)) = 1,

Q = adj (I −M (λ))
−tr (adj (I −M (λ)) ·M ′ (λ)) .

It follows that M (λ) is a non-negative irreducible matrix with
Perron Frobenius eigenvalue µPF = 1, and the columns of Q are
spanned by an associated Perron Frobenius eigenvector vPF .
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Tile counting and uniform distribution
Theorem
Let F = (T1, . . . , Tn) be a set of prototiles in Rd and let {πm} be
a sequence of partitions of a tile Ti generated by an irreducible
incommensurable multiscale substitution on F . Then

|{Tiles ∈ πm}| =
n∑

j=1

n∑
h=1

khj∑
k=1

1−
(
β

(k)
hj

)d

d qhedlm + o
(
edlm
)
, m→∞,

independent of i .

Proof of uniform distribution {πm}: Let T ∈ A (Ti), say T
appears at partition πm0 and is of type r .

Let {lm} be as before,
and let {π̃m} be the Kakutani sequence of partitions of Tr
generated by the same scheme. For m > m0

|{xm ∩ T}|
|xm|

= |{Tiles ∈ π̃m−m0}|
|{Tiles ∈ πm}|

= ed(lm−lm0)
edlm + o (1) ,

and since e−lm0 d = volT
volTi

uniform distribution follows.
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generated by the same scheme. For m > m0

|{xm ∩ T}|
|xm|

= |{Tiles ∈ π̃m−m0}|
|{Tiles ∈ πm}|

= ed(lm−lm0)
edlm + o (1) ,

and since e−lm0 d = volT
volTi

uniform distribution follows.



Elements of the proof of the path counting formula
The Wiener-Ikehara Theorem: Let f (x) be a non-negative and
monotone function on [0,∞), such that

L{f (x)} (s) =
∫ ∞

0
f (x) e−xsdx ,

converges for Re(s) > λ, and L{f (x)} (s)− c
s−λ extends to a

continuous function in Re(s) ≥ λ, then

f (x) = ceλx + o
(
eλx
)
, x →∞.

Let ε be an edge with initial vertex h, and let Bi ,ε (x) be the
number of paths of length x from i ∈ V to a point on ε.

L{Bi,ε (x)} (s) = 1− e−l(ε)s

s ·
(adj (I −M (s)))ih

det (I −M (s)) ,

and our theorem follows from a study of the locations of the zeroes
of the exponential polynomial det (I −M (s)).
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A simple but interesting example
Graphs associated with incommensurable α-Kakutani or pinwheel
schemes have a single vertex and loops of two lengths. We get

L{Bi ,ε (x)} (s) = 1
1− e−as − e−bs

for some incommensurable a and b.

For example if a
b =
√
2, numerics show that the pole structure is
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The incommensurable case - types and their frequencies

The tile counting formulas and the arguments given above imply
additional results for incommensurable schemes:

Theorem
Let {xm (r)} be a marking sequence of tiles of type r in πm. Then
{xm (r)} is uniformly distributed.

Theorem
Under the previous assumptions

|{Tiles of type r in πm}|
|{Tiles in πm}|

=

n∑
h=1

qh
khr∑

k=1

(
1−

(
β

(k)
hr

)d
)

n∑
r=1

n∑
h=1

qh
khr∑

k=1

(
1−

(
β

(k)
hr

)d
) + o (1) .
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The incommensurable case - asymptotic volumes

Theorem
The volume of the region covered by tiles of type r in πm is

n∑
h=1

( khr∑
k=1

(
β

(k)
ir

)d
log
(

1
β

(k)
ir

)
qh

)
+ o (1) , m→∞

Ingredients of proof:

1. Results on random walks on directed weighted graph with
probabilities assigned to outgoing edges [Kiro, Smilansky×2].
In this model a walker is advancing at a constant speed 1
along the graph, and when arriving to a vertex she chooses an
outgoing edge according to the probabilities.

2. Special properties of graphs and the relevant probabilities
which are associated with substitution schemes.
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A nice answer

Back to the red and blue 1
3 -Kakutani sequence:

1. lim
m→∞

|{Red intervals ∈πm}|
|{Intervals ∈πm}|

= 2
3 .

2. lim
m→∞

vol (
⋃
{Red intervals ∈πm}) =

1
3 log 1

3
1
3 log 1

3 + 2
3 log 2

3
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